<mark>に</mark> 旧 Pratham

Energy

Game: Series and Parallel Circuits

NCF and/or NCERT Learning Outcomes:

• To understand the series and parallel circuits through an activity.

Why should you learn this?

• Playing this game will help you to learn about series and parallel circuits in a fun way. It also explains how electric current flows in parallel and series circuits and what effect a faulty component in the circuit will have on the entire circuit.

Prerequisites for the Activity:

- Location: This game should ideally be played outdoors or in a space where water spillage is not an issue.
- **Prior Knowledge:** Children should have some knowledge of series and parallel circuits or should have watched relevant resources before playing this game.

What Do You Think?

- How can electrical components be connected to the energy source in different ways? How does this affect energy consumption?
- What are the differences between series and parallel circuits?

Let's investigate through a game!

- 1. Divide the children into two groups. First group has 5 players and Second group has 8 players.
- 2. Each group gets a bucket filled with water.
- 3. First group has a mug and 4 same sized of paper cups. Second group has 4 mugs and 4 different sizes of paper cups.

SIEMENS | Stiftung

Game: Series and Parallel circuits

Game Rules:

- Water must always be taken from the bucket using a mug.
- Only the mug should be used to pour water into the paper cups.
- Try not to spill water on the ground.

First Method: (One-by-One, Like a Line)

- Place a bucket filled with water. One child stands near the bucket with a mug.
- Four other children hold cups of the same size and stand in a line (See the illustration).
- The children holding cups represent an electrical device eg: light bulb.

- Now, the child with the mug fills it with water from the bucket and pours water into the cups of all four children one by one.
- The child with the mug is not allowed to move forward without filling each cup.
- After that, he/she takes a U-turn and returns to the bucket at the starting point. Make sure that the path for going and returning is not the same (See the illustration).
- If a child holding a cup is not on the decided line or path the child with a mug is not allowed to fill his mug and not allowed to move.
- As soon as the child with the mug pours the remaining water back into the bucket, all the children holding cups should act as if they are bulbs.

SIEMENS | Stiftung

Second Method: (All at Once)

• Place a bucket filled with water. Four children stand around the bucket, close to it, each holding a mug.

Game: Series and Parallel circuits

• The other four children hold cups of different sizes and stand a little away from the children with mugs (see the illustration). The children represent the different electrical devices.

- Now, the children with mugs fill them with water from the bucket and pour it into the cups of the children standing little away from them.
- The children with mugs are not allowed to move forward until they have filled the cups. After that, they take a U-turn and return to the bucket at the starting point. Make sure that the path for going and returning is not the same (See the illustration).
- As soon as the children with mugs pour the remaining water back into the bucket, the children holding the cups should act as if they are different electrical devices.

SIEMENS

This resource is licensed under CC BY-SA 4.0 International License

SIEMENS | Stiftung

Game: Series and Parallel circuits

Now, if in group 1, all the children holding cups represent bulbs. In group 2, the children holding cups represent a bulb, a fan, an iron, and a mixer. The water represents electric current.

Then based on your observations, answer these questions.

	Questions for discussion	First Method: (One-by-One, Like a Line)	Second Method: (All at Once)
	What do the buckets, cups, and water represent in terms of electricity?		
2	Can you find a pattern in how the cups are being filled in terms of electrical circuit?		
	What if you increase the number of cups? How will it affect the water bucket?		
	What happens if we remove one boy/girl holding a cup? Does it affect the other devices?		

- Compare your experience with series and parallel circuits. Which method resembles which type of circuit? Why?
- Why was only one type of device used in the first method but different ones in the second? find out.

Conclusion

- The first method (one-by-one) is like a series circuit all energy (or water) flows through a single path. If one point fails, the remaining devices stop functioning.
- The second method (all at once) is like a parallel circuit multiple paths allow energy (or water) to flow freely. If one point fails, the remaining devices keep functioning.

4

